Science
LONDON: Indian-Origin Chemist Among Tech ‘Nobel’ Prize Winners For Revolutionary DNA Technique
LONDON: Cambridge University chemists Shankar Balasubramanian and David Klenerman were on Tuesday declared the winners of the 2020 Millennium Technology Prize, a prestigious global science and technology prize awarded for their development of revolutionary sequencing techniques which means DNA can now be read in super-fast times.
The prize, awarded by Technology Academy Finland (TAF) at two-year intervals since 2004 – when Sir Tim Berners-Lee was honoured for his discovery of the World Wide Web – to highlight the extensive impact of science and innovation on the wellbeing of society, is worth Euro 1 million.
Sir Balasubramanian, an India-born British professor of medicinal chemistry, and Sir Klenerman, a British biophysical chemist, co-invented the Solexa-Illumina Next Generation DNA Sequencing (NGS), technology enabling fast, accurate, low-cost and large-scale genome sequencing – the process of determining the complete DNA sequence of an organism”s make-up, which is proving crucial in humanity’s fight against the COVID-19 pandemic.
The duo went on to co-found the company Solexa to make the technology more broadly available to the world.
“This is the first time we’ve received an international prize that recognises our contribution to developing the technology – but it’s not just for us, it”s for the whole team that played a key role in the development of the technology and for all those that have inspired us on our journey,” the winning scientists said in a joint statement.
President of the Republic of Finland Sauli Niinisto, who is the Patron of the prize, presented the award to the scientists in a virtual ceremony on Tuesday.
The announcement of the 2020 award was delayed due to the COVID-19 pandemic.
Meanwhile,
the technology is being used to track and explore the novel coronavirus viral
mutations, which is a growing global concern.
“The future potential of NGS is enormous and the exploitation of the technology
is still in its infancy,” said Paivi Torma, Academy Professor and Chair of
the Millennium Technology Prize Committee.
“The technology will be a crucial element in promoting sustainable development through personalisation of medicine, understanding and fighting killer diseases, and hence improving the quality of life. Professor Balasubramanian and Professor Klenerman are worthy winners of the prize,” said Prof. Torma.
The 2020 prize marks the first time that the honour has been awarded to more than one recipient for the same innovation, celebrating the significance of collaboration.
Professor Marja Makarow, Chair of Technology Academy Finland said: “Collaboration is an essential part of ensuring positive change for the future. Next Generation Sequencing is the perfect example of what can be achieved through teamwork and individuals from different scientific backgrounds coming together to solve a problem.”
“The technology pioneered by Professor Balasubramanian and Professor Klenerman has also played a key role in helping discover the coronavirus”s sequence, which in turn enabled the creation of the vaccines – itself a triumph for cross-border collaboration – and helped identify new variants of COVID-19,” Makarow said.
The winning work has helped the creation of multiple vaccines, now being administered worldwide, and is critical to the creation of new vaccines against new dangerous viral strains. The results will also be used to prevent future pandemics.
However, the International Selection Committee – the body of experts that evaluates all nominations for the prize – pointed out that it had made its decision in February 2020, before the global spread of the COVID-19 pandemic.
The technology is also allowing scientists and researchers to identify the underlying factors in individuals that contribute to their immune response to COVID-19.
This information is essential to unravelling the reason behind why some people respond much worse to the virus than others. The results of these studies will be invaluable for understanding how to minimise the chances of people developing exaggerated inflammatory responses, which is now understood as being responsible for some of the symptoms of COVID-19.
The winning NGS technology has had, and continues to have, a huge transformative impact in the fields of genomics, medicine and biology. One measure of the scale of change is that it has allowed a million-fold improvement in speed and cost, when compared to the first sequencing of the human genome.
The prize committee points to how in 2000, sequencing of one human genome took over 10 years and cost more than a billion dollars.
Today, the human genome can be sequenced in one day at a cost of USD 1,000 and more than a million human genomes are sequenced at scale each year, thanks to the technology co-invented by Professors Balasubramanian and Klenerman. This means the world can understand diseases much better and much more quickly.
The NGS method’s ability to sequence billions of fragments in a parallel fashion makes the technique fast, accurate and very cost-efficient. The invention of NGS has been described as a revolutionary and novel approach to the understanding of the genetic code in all living organisms.
In the field of cancer, NGS is becoming the standard analytical method for defining personalised therapeutic treatment. In addition to medical applications, NGS has also had a major impact on all of biology as it allows the clear identification of thousands of organisms in almost any kind of sample.
The NGS method involves fragmenting sample DNA into many small pieces that are immobilised on the surface of a chip and locally amplified.
Each fragment is then decoded on the chip, base-by-base, using fluorescently coloured nucleotides added by an enzyme. By detecting the colour-coded nucleotides incorporated at each position on the chip with a fluorescence detector – and repeating this cycle hundreds of times – it is possible to determine the DNA sequence of each fragment.
The collected data is then analysed using sophisticated computer software to assemble the full DNA sequence from the sequence of all these fragments.
Science
SAN FRANCISCO: Indian-Origin Founder Unveils Wearable Device That Records Every Moment Of Your Life
SAN FRANCISCO: Advait Paliwal, an Indian-origin entrepreneur, has recently introduced a wearable AI device called Iris, designed to provide users with “infinite memory.” According to Paliwal, the device captures “pictures every minute,” which are stored either on the device or in the cloud, allowing users to preserve life’s small moments and recognize patterns often overlooked.
In a series of tweets, Mr Paliwal, who is based in San Francisco, explained that Iris not only organises the photos into a timeline but also uses AI to generate captions and help users recall forgotten details. Additionally, the device features a “focus mode,” which detects when the wearer is distracted and offers reminders to refocus.
Mr. Paliwal shared that the design of Iris is inspired by the evil eye symbol. He developed the device over the summer at the Augmentation Lab in Cambridge, part of a two-month AI and hardware talent accelerator program. After the program, Mr Paliwal presented Iris to over 250 attendees at the MIT Media Lab, where he received positive feedback, with many expressing interest in owning the device.
Highlighting its potential, Mr Paliwal suggested that Iris could offer safety and health benefits, such as aiding doctors in understanding patients’ daily habits or ensuring workplace safety compliance. In elderly care, the device could help caregivers monitor patients without being intrusive.
However, after Mr Paliwal shared his post on X (formerly Twitter), reactions were mixed. While some users expressed excitement, others raised privacy concerns. One person commented, “It’s an interesting concept, but I wouldn’t want to interact with someone wearing this, taking a photo every minute.” Paliwal responded by pointing out that people are already “constantly taking mental photos.”
Others were more enthusiastic, with one user noting, “I’ve been searching for a device like this for years! A picture every minute should be enough if it archives, organizes, labels, and retrieves them.” Another user praised the concept, saying, “Love the idea. The design and name are perfect. Great work!”
Science
TEXAS: Meet Gopi Thotakura, Indian Who Will Soon Go To The Edge Of Outer Space
TEXAS: In an unprecedented leap towards the stars, pilot Gopichand Thotakura is set to become the first Indian to venture into space as a tourist. Selected as part of the elite crew for Blue Origin’s New Shephard-25 (NS-25) mission, Mr Thotakura will make a journey beyond the Earth’s atmosphere along with five other candidates.
Gopichand Thotakura, an entrepreneur and pilot, joins a distinguished lineup of 31 candidates who have flown beyond the Karman line, the boundary between Earth’s atmosphere and outer space.
A connoisseur of the skies since his youth, Mr Thotakura’s passion for flight saw him defy conventional norms, learning to pilot aircraft before mastering the art of driving. To further his passion, he graduated from Embry-Riddle Aeronautical University with a Bachelor of Science in Aeronautical Science.
Describing him, Blue Origins wrote, “Gopi is a pilot and aviator who learned how to fly before he could drive. Gopi pilots bush, aerobatic, and seaplanes, as well as gliders and hot air balloons, and has served as an international medical jet pilot. A lifelong traveler, his most recent adventure took him to the summit of Mt. Kilimanjaro.”
Born in Vijayawada, the 30-year-old currently runs Preserve Life Corp, a global center for holistic wellness and applied health located near Hartsfield-Jackson Atlanta International Airport
Each member of the NS-25 mission will carry a postcard on behalf of Blue Origin’s foundation, Club for the Future, symbolizing the collective dreams and aspirations of young minds worldwide.
From an environmental standpoint, the NS-25 mission heralds a new era of sustainability in space exploration.
“Nearly 99% of New Shepard’s dry mass is reused, including the booster, capsule, engine, landing gear, and parachutes. New Shepard’s engine is fueled by highly efficient liquid oxygen and hydrogen. During flight, the only byproduct is water vapor with no carbon emissions,” Blue Origins said in their statement.
The launch date for the mission is yet to be announced.
The mission also includes former Air Force Captain Ed Dwight, who was selected by US President John F Kennedy in 1961 as the country’s first Black astronaut candidate but was never granted the opportunity to fly to space.
Blue Origin has carried out six crewed flights — some passengers were paying customers and others were guests — since July 2021, when CEO Jeff Bezos himself took part in the first.
The company is also developing a heavy rocket for commercial purposes called New Glenn, with the maiden flight planned for next year.
This rocket, which measures 98 meters (320 feet) high, is designed to carry payloads of as much as 45 metric tons into low Earth orbit.
Science
WASHINGTON: Who Is Aroh Barjatya, Indian-Origin Researcher Who Led Recent NASA Mission
WASHINGTON: Aroh Barjatya, an India-born researcher, led NASA’s mission that launched sounding rockets during the recent total solar eclipse.
The US space agency launched three sounding rockets during the total solar eclipse on April 8 to study what happens to the Earth’s upper atmosphere when sunlight dims momentarily over a part of the planet.
Who Is Aroh Barjatya?
A professor of engineering physics, Aroh Barjatya directs the Space and Atmospheric Instrumentation Lab at the Embry-Riddle Aeronautical University in Florida.
Born to a chemical engineer, Ashok Kumar Barjatya, and his wife Rajeshwari, Aroh Barjatya went to schools across India, including in Patalganga near Mumbai, Hyderabad, Jaipur, Pilani, and Solapur.
He went on to get a degree in electronics engineering from Solapur’s Walchand Institute of Technology.
In 2021, he moved to the US for a master’s degree in electrical engineering at Utah State University. He later did his PhD in spacecraft instrumentation from the same university.
“In addition to leading an externally funded research enterprise, as a tenured faculty I have mentored and engaged young minds through inquiry-based learning tactics, created a new area of concentration within the Engineering Physics programme at ERAU… My mission is to advance the state of the art in space research and education and to inspire the next generation of space engineers and scientists,” he wrote on his LinkedIn profile.
-
Diplomatic News1 year agoSTOCKHOLM: Dr. Neena Malhotra appointed as the next Ambassador of India to the Kingdom of Sweden
-
Opinions4 years ago
2020 will be remembered as time of the pandemic. The fallout will be felt for years
-
Diplomatic News1 year agoMELBOURNE: Fourth India-Australia 2+2 Secretary-level Consultations
-
Diplomatic News1 year agoKINGSTON: Shri Subhash Prasad Gupta concurrently accredited as the next High Commissioner of India to St.Vincent and the Grenadines
-
Diplomatic News3 years agoROME : State Visit of Prime Minister of Italy to India
-
Culture3 years agoOSLO: Norway Dance Crew Grooves To Kala Chashma At Wedding, Wins Internet
-
Science2 years agoWASHINGTON: Indian-American Shohini Sinha To Head FBI’s Field Office In Salt Lake City
-
Diplomatic News4 years agoBRAZILIA: India-Brazil Consultations on UN related Issues (December 13, 2021)
