Science
TORONTO: Indian-Origin Scientist Conducts World’s 1st Molecular-Level Analysis Of Omicron
TORONTO: A team of researchers, including an Indian-origin scientist at the prestigious University of British Columbia, has become the first in the world to conduct a molecular-level structural analysis of the Omicron spike protein, which could help accelerate the development of more effective treatments against the variant.
Spike protein helps the virus enter and infect cells.
Dr Sriram Subramaniam, professor in UBC faculty of medicine’s department of biochemistry and molecular biology, said that Omicron has greater binding affinity than the original SARS-CoV-2 virus, with levels more comparable to what seen with the Delta variant.
The findings, published in the Science journal, sheds new light on why Omicron is highly transmissible and will help accelerate the development of more effective treatments, according to a statement issued by the Vancouver-based university.
The analysis, done at near atomic resolution using a cryo-electron microscope, reveals how the heavily mutated variant infects human cells and is highly evasive of immunity, Mr Subramaniam discussed the implications of his team’s research and underlined that “vaccination remains our best defence against the Omicron variant”.
The findings show strong antibody evasion and binding with human cells that contribute to increased transmissibility, and that vaccination remains the best defence, the university said.
“UBC researchers are the first in the world to conduct a molecular-level structural analysis of the Omicron variant spike protein,” it said.
Dr Subramaniam said: “the Omicron variant is unprecedented for having 37 spike protein mutations, that’s three to five times more mutations than any other variant we’ve seen”.
This is important for two reasons. Firstly, because the spike protein is how the virus attaches to and infects human cells. Secondly, because antibodies attach to the spike protein in order to neutralise the virus, he said.
“Therefore, small mutations on the spike protein have potentially big implications for how the virus is transmitted, how our body fights it off, and the effectiveness of treatments.
“Our study used cryo-electron microscopy and other tests to understand how mutations impact the behaviour of the Omicron variant at a molecular level,” Dr Subramaniam said.
He said that several mutations (R493, S496 and R498) create new salt bridges and hydrogen bonds between the spike protein and the human cell receptor known as ACE2.
This appears to increase binding affinity, how strongly the virus attaches to human cells, while other mutations (K417N) decrease the strength of this bond, Subramaniam said.
He said it is remarkable that the Omicron variant evolved to retain its ability to bind with human cells efficiently despite such extensive mutations.
“Our experiments confirm what we’re seeing in the real world, that the Omicron spike protein is far better than other variants at evading monoclonal antibodies that are commonly used as treatments, as well as at evading the immunity produced by both vaccines and natural infection,” he said.
Notably, Omicron was less evasive of the immunity created by vaccines, compared to immunity stemming from natural infection in unvaccinated COVID-19 patients, he said.
Both the characteristics seen as a result of spike protein mutations, strong binding with human cells and increased antibody evasion, are likely contributing factors to the increased transmissibility of the Omicron variant, he said.
These are the underlying mechanisms fuelling the variant’s rapid spread and why Omicron could become the dominant variant of SARS-CoV-2 very quickly, he said.
“The good news is that knowing the molecular structure of the spike protein will allow us to develop more effective treatments against Omicron and related variants in the future. Understanding how the virus attaches to and infects human cells means we can develop treatments that disrupt that process and neutralise the virus.
“An important focus for our team is to understand better the binding of neutralising antibodies and treatments that will be effective across the entire range of variants, and how those can be used to develop variant-resistant treatments,” Subramaniam added.
Omicron was first identified in South Africa and Botswana in November and is driving the current wave of infections.
Science
SAN FRANCISCO: Indian-Origin Founder Unveils Wearable Device That Records Every Moment Of Your Life
SAN FRANCISCO: Advait Paliwal, an Indian-origin entrepreneur, has recently introduced a wearable AI device called Iris, designed to provide users with “infinite memory.” According to Paliwal, the device captures “pictures every minute,” which are stored either on the device or in the cloud, allowing users to preserve life’s small moments and recognize patterns often overlooked.
In a series of tweets, Mr Paliwal, who is based in San Francisco, explained that Iris not only organises the photos into a timeline but also uses AI to generate captions and help users recall forgotten details. Additionally, the device features a “focus mode,” which detects when the wearer is distracted and offers reminders to refocus.
Mr. Paliwal shared that the design of Iris is inspired by the evil eye symbol. He developed the device over the summer at the Augmentation Lab in Cambridge, part of a two-month AI and hardware talent accelerator program. After the program, Mr Paliwal presented Iris to over 250 attendees at the MIT Media Lab, where he received positive feedback, with many expressing interest in owning the device.
Highlighting its potential, Mr Paliwal suggested that Iris could offer safety and health benefits, such as aiding doctors in understanding patients’ daily habits or ensuring workplace safety compliance. In elderly care, the device could help caregivers monitor patients without being intrusive.
However, after Mr Paliwal shared his post on X (formerly Twitter), reactions were mixed. While some users expressed excitement, others raised privacy concerns. One person commented, “It’s an interesting concept, but I wouldn’t want to interact with someone wearing this, taking a photo every minute.” Paliwal responded by pointing out that people are already “constantly taking mental photos.”
Others were more enthusiastic, with one user noting, “I’ve been searching for a device like this for years! A picture every minute should be enough if it archives, organizes, labels, and retrieves them.” Another user praised the concept, saying, “Love the idea. The design and name are perfect. Great work!”
Science
TEXAS: Meet Gopi Thotakura, Indian Who Will Soon Go To The Edge Of Outer Space
TEXAS: In an unprecedented leap towards the stars, pilot Gopichand Thotakura is set to become the first Indian to venture into space as a tourist. Selected as part of the elite crew for Blue Origin’s New Shephard-25 (NS-25) mission, Mr Thotakura will make a journey beyond the Earth’s atmosphere along with five other candidates.
Gopichand Thotakura, an entrepreneur and pilot, joins a distinguished lineup of 31 candidates who have flown beyond the Karman line, the boundary between Earth’s atmosphere and outer space.
A connoisseur of the skies since his youth, Mr Thotakura’s passion for flight saw him defy conventional norms, learning to pilot aircraft before mastering the art of driving. To further his passion, he graduated from Embry-Riddle Aeronautical University with a Bachelor of Science in Aeronautical Science.
Describing him, Blue Origins wrote, “Gopi is a pilot and aviator who learned how to fly before he could drive. Gopi pilots bush, aerobatic, and seaplanes, as well as gliders and hot air balloons, and has served as an international medical jet pilot. A lifelong traveler, his most recent adventure took him to the summit of Mt. Kilimanjaro.”
Born in Vijayawada, the 30-year-old currently runs Preserve Life Corp, a global center for holistic wellness and applied health located near Hartsfield-Jackson Atlanta International Airport
Each member of the NS-25 mission will carry a postcard on behalf of Blue Origin’s foundation, Club for the Future, symbolizing the collective dreams and aspirations of young minds worldwide.
From an environmental standpoint, the NS-25 mission heralds a new era of sustainability in space exploration.
“Nearly 99% of New Shepard’s dry mass is reused, including the booster, capsule, engine, landing gear, and parachutes. New Shepard’s engine is fueled by highly efficient liquid oxygen and hydrogen. During flight, the only byproduct is water vapor with no carbon emissions,” Blue Origins said in their statement.
The launch date for the mission is yet to be announced.
The mission also includes former Air Force Captain Ed Dwight, who was selected by US President John F Kennedy in 1961 as the country’s first Black astronaut candidate but was never granted the opportunity to fly to space.
Blue Origin has carried out six crewed flights — some passengers were paying customers and others were guests — since July 2021, when CEO Jeff Bezos himself took part in the first.
The company is also developing a heavy rocket for commercial purposes called New Glenn, with the maiden flight planned for next year.
This rocket, which measures 98 meters (320 feet) high, is designed to carry payloads of as much as 45 metric tons into low Earth orbit.
Science
WASHINGTON: Who Is Aroh Barjatya, Indian-Origin Researcher Who Led Recent NASA Mission
WASHINGTON: Aroh Barjatya, an India-born researcher, led NASA’s mission that launched sounding rockets during the recent total solar eclipse.
The US space agency launched three sounding rockets during the total solar eclipse on April 8 to study what happens to the Earth’s upper atmosphere when sunlight dims momentarily over a part of the planet.
Who Is Aroh Barjatya?
A professor of engineering physics, Aroh Barjatya directs the Space and Atmospheric Instrumentation Lab at the Embry-Riddle Aeronautical University in Florida.
Born to a chemical engineer, Ashok Kumar Barjatya, and his wife Rajeshwari, Aroh Barjatya went to schools across India, including in Patalganga near Mumbai, Hyderabad, Jaipur, Pilani, and Solapur.
He went on to get a degree in electronics engineering from Solapur’s Walchand Institute of Technology.
In 2021, he moved to the US for a master’s degree in electrical engineering at Utah State University. He later did his PhD in spacecraft instrumentation from the same university.
“In addition to leading an externally funded research enterprise, as a tenured faculty I have mentored and engaged young minds through inquiry-based learning tactics, created a new area of concentration within the Engineering Physics programme at ERAU… My mission is to advance the state of the art in space research and education and to inspire the next generation of space engineers and scientists,” he wrote on his LinkedIn profile.
-
Diplomatic News1 year agoSTOCKHOLM: Dr. Neena Malhotra appointed as the next Ambassador of India to the Kingdom of Sweden
-
Opinions4 years ago
2020 will be remembered as time of the pandemic. The fallout will be felt for years
-
Diplomatic News1 year agoMELBOURNE: Fourth India-Australia 2+2 Secretary-level Consultations
-
Diplomatic News1 year agoKINGSTON: Shri Subhash Prasad Gupta concurrently accredited as the next High Commissioner of India to St.Vincent and the Grenadines
-
Diplomatic News3 years agoROME : State Visit of Prime Minister of Italy to India
-
Diplomatic News2 years agoMOSCOW: Global Issues, BRICS: What PM Modi, Putin Discussed In Their Latest Talks
-
Diplomatic News4 years agoMALABO : India offers support for Africa to fight the Omicron variant
-
Diplomatic News3 years agoDAKAR : Shri Dinkar Asthana appointed as the next Ambassador of India to the Republic of Senegal
